
SECTION V:  

Design


No national standards or guidelines dictate rail-with-trail facility design. Guidance must 
be pieced together from standards related to shared use paths, pedestrian facilities, rail­
road facilities, and/or roadway crossings of railroad rights-of-way. Trail designers should 
work closely with railroad operations and maintenance staff to achieve a suitable RWT de­
sign. Whenever possible, trail development should reflect standards set by adjacent rail­
roads for crossings and other design elements. Ultimately, RWTs must be designed to meet 
both the operational needs of railroads and the safety of trail users. The challenge is to 
find ways of accommodating both types of uses without compromising safety or function. 

The recommendations in this section are based on: 

• Extensive research into all existing RWTs. 

• In-depth case studies of 21 existing and planned RWTs. 

• Interviews with  railroad officials, trail managers, and law enforcement officials. 

• Review of  existing  train and trail safety literature. 

• Analysis of  publicly-accessible trespassing and crash data. 

• Input from a panel of  railroad officials and experts, trail developers and managers, 
trail users, lawyers, railroad operators, and others. 

• Extrapolation from relevant State transportation manuals, the American Association 
of State Highway and Transportation Officials (AASHTO) Guide for the Development 
of Bicycle Facilities (1999) (hereafter referred to as the AASHTO Bike Guide), Ameri­
cans with Disabilities Act (ADA) publications for trails and pedestrian facilities, the 
Manual on Uniform Traffic Control Devices (MUTCD, 2000), and numerous Federal 
Railroad Administration (FRA)  and other Federal Highway Administration 
(FHWA) documents. 

• The  experience and expertise of researchers and reviewers, including experienced 
railroad and trail design engineers, landscape architects, safety specialists, trail de­
velopers and managers, trail users, lawyers, railroad operators, operations officials, 
and others involved in this study. 
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Elliot Bay Trail. Seattle, WA 

The design recommendations should be considered a toolkit, rather than standards or 
guidelines. More research will be needed to develop standards that can be incorporated 
into AASHTO’s design guides and the MUTCD. Each RWT project is different; the design 
should be based on the specific conditions of the site, requirements of the railroad owner, 
completion of a feasibility study (as discussed in Section III), State and other regulatory 
requirements, and engineering judgment. 

Overview of Recommendations 

1. RWT designers should maximize the setback between any RWT and active railroad 
track. The setback distance between a track centerline and the closest edge of the 
RWT should correlate to the type, speed, and frequency of train operations, as well as 
the topographic conditions and separation techniques. 

2. Subject to railroad and State and Federal guidelines and the advice of engineering 
and safety experts, exceptions to the recommended setbacks may include: 

a. Constrained areas (bridges, cut and fill areas) 
b. Low speed and low frequency train operations 

In these cases and in areas with a history of extensive trespassing, fencing or other 
separation technique is recommended. 

3. When on railroad property, RWT  planners should adhere to the request or require­
ments for fencing by the railroad company. Fencing and/or other separation tech­
niques should be a part of all RWT projects. 

4. Trail planners should minimize the number of at-grade crossings, examine all rea­
sonable alternatives to new at-grade track crossings, and seek to close existing at-
grade crossings as part of the project. 

5. RWT proposals should include a full review and incorporation of relevant utility 
requirements for existing and potential utilities in the railroad corridor. 

6. The feasibility process should clearly document the cost and environmental impact of 
new bridges and trestles. 

7. Trails should divert around railroad tunnels; if they need to go through a single-track 
railroad tunnel, they likely are not feasible. 

8. Where an RWT is proposed to bypass a railroad yard (such as in Seattle, Washington), 
adequate security fencing must be provided along with regular patrols by the RWT 
manager. High priority security areas may need additional protection. 

9. An environmental assessment should be conducted concurrent with, and usually in­
dependent from, the feasibility analysis, and should include project alternatives lo­
cated off the railroad corridor, if at all possible. 

Rail Characteristics and Setting 

Over half of the 65 existing trails run along Class I mainline or other freight railroad lines, 
with the remainder split between short lines and public transit (see Figure 5.1). Most of 
the RWTs are either adjacent to railroad property or on publicly-held land that is used or 
leased by freight or passenger railroad companies. At least 11 known RWTs (approxi­
mately 17 percent) are on privately held Class I railroad properties, and others are on pri-
vately-held Class II, shortline, or excursion lines (see Table 5.1). There is considerable 
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TABLE 5.1 Examples of Active RWTs by Corridor Type and Ownership 

Trail Name Corridor Owner Railroad Operation Location 

Class I Railroads 
Arboretum Trail* Norfolk Southern Unknown Pennsylvania 
Cedar Lake Trail Burlington Northern Santa Fe Burlington Northern Minnesota 
Celina/Coldwater Bike Trail* Norfolk Southern RJ Corman Ohio 
Columbus Riverwalk* Norfolk Southern Railtex/GATX/Georgia Southwestern Georgia 

Railroad Company 
Eastbank Esplanade/Steel Bridge Riverwalk Union Pacific Union Pacific, Amtrak Oregon 
Elk River Trail* Norfolk Southern Norfolk Southern West Virginia 
Gallup Park Trail* Norfolk Southern Norfolk Southern Michigan 
Huffman Prairie Overlook Trail CSX CSX and Grand Trunk Western Ohio 
Schuylkill River Trail* Norfolk Southern (3.2 km/2 mi) Norfolk Southern Pennsylvania 
Stavich Bicycle Trail CSX CSX Ohio and Pennsylvania 
Union Pacific Trail Union Pacific Union Pacific Colorado 
Zanesville Riverfront Bikepath* Norfolk Southern CSX and Norfolk Southern Ohio 

Privately- owned, Class II or Other Freight 
Blackstone River Bikeway Providence and Worcester Railroad Providence and Worcester Railroad Rhode Island 
Central Ashland Bike Path Rail TEX Rail TEX Oregon 
Clarion-Little Toby Creek Trail Buffalo to Pittsburgh Railroad Buffalo to Pittsburgh Railroad Pennsylvania 
Heritage Trail Illinois Central Illinois Central Iowa 
Lehigh Gorge River Trail Reading and Northern Reading and Northern Pennsylvania 

Railroad Company Railroad Company 
Lower Yakima Valley Pathway Washington Central Washington Central Washington 
MRK Trail Chicago & Northwestern Chicago & Northwestern Illinois 
Railroad Trail Lake State Railroad Lake State RR Michigan 
Rock River Recreation Path Chicago & Northwestern CNW, Union Pacific and Soo Line Illinois 
Silver Creek Bike Trail Dakota, Minnesota and Eastern Dakota, Minnesota and Eastern Minnesota 
Tony Knowles Coastal Bicycle Trail Alaska Railroad Corporation Alaska Railroad Corporation Alaska 
Whistle Stop Park Cimarron Valley Railroad Cimarron Valley Railroad Kansas 

Excursion/Short-Line, Publicly or Privately Owned Land 
Animas River Greenway Trail Durango & Silverton Narrow Durango & Silverton Narrow Colorado 

Gauge Railroad Gauge Railroad 
Cottonbelt Trail Dallas Area Rapid Transit Fort Worth and Western Railroad Texas 
Eastern Promenade Trail Maine Department of Transportation Maine Narrow Gauge Maine 
Heritage Rail Trail County Park York County Northern Central Railway Inc. Pennsylvania 
Lowell Canal Trail National Park Service National Park Service Massachusetts 
Santa Fe Rail Trail Santa Fe Southern Santa Fe Southern New Mexico 

*Properties acquired by Norfolk Southern from Conrail. 
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TABLE 5.1 Examples of Active RWTs by Corridor Type and Ownership (continued) 

Trail Name Corridor Owner Railroad Operation Location 

Publicly Owned Railroad Corridors, Passenger or Freight 
Atchison, Topeka and Santa Fe Trail Orange County Transportation Amtrak, Southern California California 

Authority Regional Rail 
Bugline Trail Waukesha County Union Pacific Wisconsin 
Burlington Waterfront Bikeway Vermont Agency of Transportation Vermont Railway Company Vermont 
Cascade Trail (SR 20) City of Burlington/Skagit County Burlington Northern Santa Fe Railway Washington 
Duwamish Trail City and Port of Seattle Burlington Northern Santa Fe Railway Washington 
Eastern Promenade Trail Maine Department of Transportation Maine Narrow Gauge Mane 
Eliza Furnace Trail City of Pittsburgh CSX Pennsylvania 
Folsom Parkway Rail-Trail Regional Transit Authority Regional Transit Authority California 
Great Lakes Spine Trail Iowa Dept. of Natural Resources, Chicago Northwestern Transportation Iowa 

Dickinson County, Cities Company 
Heritage Rail Trail County Park York County Northern Central Railway Inc. Pennsylvania 
La Crosse River State Trail State of Wisconsin Canadian Pacific Railway, Amtrak Wisconsin 
Levee Walking Trail City of Helena Arkansas Midland Montana 
Myrtle Edwards Park Trail City and Port of Seattle Burlington Northern Santa Fe Railway Washington 
Platte River Trail Regional Transit District Denver Rail Heritage Society Colorado 
Porter Rockwell Trail Utah Transit Authority TRAX Utah 
Rock Island Trail City of Colorado Springs Denver & Rio Grande Western Colorado 
Rose Canyon Bike Path Metropolitan Transit District Board Amtrak and Santa Fe California 
Seattle Waterfront Pathway City of Seattle METRO Transit Washington 
Southwest Corridor Park Massachusetts Bay Transit Authority MBTA Commuter Rail and Amtrak Massachusetts 
Three Rivers Heritage Trail City of Pittsburgh CSX Pennsylvania 
Traction Line Recreation Trail New Jersey Transit Authority NJ Transit and Norfolk Southern New Jersey 
Traverse Area Recreation Trail (TART) Michigan Department of Tuscola & Saginaw Bay RR Michigan 

Transportation 
Watts Towers Crescent Greenway Metropolitan Transportation Metropolitan Transportation California 

Authority Authority 
West Orange Trail  Orange County Parks CSX California 
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1-3 trains
per day

30%

9-16 trains
per day
8%

3-9 trains
per hour
16%

1-4 trains
per week

13%

Unknown
7%

4-8 trains per day
16%
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10%

NOTE: Where a range of frequencies was given, the most frequent service was taken.
Source: Rails-to-Trails Conservancy
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Type of railroad adjacent to existing RWTs 
(Note: Railroads identified their function by a variety of FIGURE 5.2 Frequency of trains, by percentage of existing 
names. Because more than one type of railroad may operate RWTs 
in a corridor, percentages add up to more than 100%.) 
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30.5 to 45.7 m
(101 to 150 ft)  7%

18.6 to 30.4 m
(61 to 100 ft)
24%

9.2 to 18.3 m
(31 to 60 ft)
20%

45.8 to 61 m
(151 - 200 ft)

13%

>61 m 
(>200 ft)  5%

Unknown
21%

<9.1 m (0 to 30 ft)
10%

(Total number of trails = 61) Source: Rails-to-Trails Conservancy

FIGURE 5.3 Type of terrain through which trails pass FIGURE 5.4 Width of full corridor, by percentage of trails

(Because trails pass through more than one type of terrain, (Note: corridor widths often vary.)

percentages add up to more than 100%.)


variance in the frequency of train operation, from three to nine trains per hour (16 per­
cent) to just a few trains a week (13 percent) (see Figure 5.2). In many cases, the peak 
hours of rail use correspond with peak trail use hours. The average maximum train speed 
is 51 km/h (32 mi/h), with a range of 8 to 225 km/h (5 to 140 mi/h). All but three trains 
in RWT corridors travel at speeds less than 97 km/h (60 mi/h). The three fastest trains are: 

• Massachusetts Bay Transit Authority Commuter Rail and Amtrak (Southwest Corri­
dor Park, Boston, Massachusetts), maximum speed 225 km/h (140 mi/h), setback 
over 6.1 m (20 ft), separated by concrete wall and chain link fence. 

• Orange County Transportation Authority and Amtrak (see ATSF Trail case study, p.11). 

• State of  Wisconsin and Amtrak (see La Crosse River State Trail case study, p. 18). 
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2.4 to 3 m
(8 to 10 ft)
70%

3.7 to 4.3 m
(12 to 14 ft)

15%

4.5 to 6 m (15 to 20 ft)
10%

1.2 to 1.8 m (4 to 6 ft)
5%

(Average width = 3.1 m / 10.3 ft) Source: Rails-to-Trails Conservancy

FIGURE 5.5 Width of RWT, by percentage of trails 

1876 1876

Setback:
Distance from track centerline to trail

FIGURE 5.6 Setback and separation definition 

6.4 to 15 m
(21 to 50 ft)

27%
4 to 6.1 m
(12 to 20 ft)
23%

2.4 to 3.7 m
(8 to 12 ft)
13%

15 to 27 m
(51 to 90 ft)

12%

28 to 30 m
(90 to 100 ft)

10%

Unknown
2%

0.6 to 2.1 m
(2 to 7 ft)
13%

(Average = 10.1 m / 33 ft) Source: Rails-to-Trails Conservancy

The existing U.S. RWTs are located in 20 States, encompass 
385 km (239 miles), and traverse a wide variety of terrain, in­
cluding urban, suburban, residential, rural, commercial, nature 
preserve, industrial, and agricultural lands (see Figure 5.3). 

The RWT corridor widths average 38 m (126 ft), while the trails 
are t y pically 2.4 to 3 m (8 to 10 ft) wide (see Figures 5.4 
and 5.5). 

Setback: Considerations 

The term “setback” refers to the distance between the edge of an 
RWT and the centerline of the closest active railroad track while 
“separation” refers to the treatment of the space between an 
RWT and the closest active railroad tracks, including fences, 
vegetation, ditches, and other items (see Figure 5.6). When de­
termining the minimum setback for a RWT, factors to consider 
include train speed and frequency, maintenance needs, appli­
cable State standards, separation techniques, historical prob­
lems, track curvature, topography, and engineering judgment. 

The range of trail setback on the existing RWTs varies from less 
than 2.1 m (7 ft) to as high as 30 m (100 ft) (see Figure 5.7), 
with an average of almost 10 m (33 ft) of setback from the cen­
terline of the nearest track. A comparison of RWT setback dis­
tance to both train speed and frequency reveal little correlation; 
over half (33 of 61) of the existing RWTs have 7.6 m (25 ft) or 
less setback, even alongside high speed trains (see Figures 5.8 
and 5.9). Many of the trails with little setback are ones that have 
been established many years. The trail managers for these well-
established trails report few problems. However, interviews 
with train engineers in several areas indicate that they observe 
a tremendous amount of daily trespassing and problems in ar­
eas with little setback and no physical separation. 

In comparison, RWTs in Perth, Australia, are typically 3 m 
(10 ft) wide, and separated from the adjacent railway line by a 
1.8 m (6 ft) high chain link fence with three strands of barbed 
wire. The minimum setback from track centerline to the fence 
is 4.5 m (15 ft). 

Researchers attempted to determine if narrower setback dis­
tances have a direct correlation to safety problems. However, 
based on the almost nonexistent record of claims, crashes, and 
other problems on any RWTs, they were unable to determine a 
correlation between setback distance and trail user safety. An 

FIGURE 5.7 Distance between edge of trail and track 
centerline, by percentage of trails 
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FIGURE 5.8 RWT setback/train speed correlation FIGURE 5.9 Setback/frequency correlation 

FRA study on the impact of high train speed on people standing on boarding platforms 
concludes that induced airflow is a safety issue for a person within 2 m (6.5 ft) of a train 
traveling at 240 km/h (150 mi/h) (Volpe, 1999). 

There is no consensus on either appropriate setback requirements or a method of deter­
mining the requirement. Some trail planners use the AASHTO Bike Guide for guidance. 
Given that bicycle lanes are set back 1.5 to 2.1 m (5 to 7 ft) from the centerline of the out­
side travel lane of even the busiest roadway, some consider this analogous. Others use 
their State Public Utilities Commission’s minimum setback standards (also known as 
“clearance standards”) for adjacent walkways (for railroad switchmen). These published 
setbacks represent the legal minimum setbacks based on the physical size of the railroad 
cars, and are commonly employed along all railroads and at public grade crossings. The 
minimum setback distance is typically 2.6 m (8.5 ft) on tangent and 2.9 m (9.5 ft) on 
curved track. However, FRA and railroad officials do not consider either of these methods 
to be appropriate for an RWT. This is because AASHTO’s guidelines for motor vehicle fa­
cility design are not seen as comparable to rail design, and the setback distance for the 
general public should be much greater than that allowed for railroad workers. 

Some railroads and States have established their own standards. For example, the BNSF’s 
policy on “Trails with Rails” states, “Where train speeds are greater than 145 km/h 
(90 mi/h), trails are not acceptable. No trail will be constructed within 31 m (100 ft) of any 
mainline track where train speeds are between 113 km/h (70 mi/h) and 145 km/h 
(90 mi/h). Trails may be constructed between 15 m (50 ft) and 30 m (100 ft) where main­
line train speed is 80 km/h (50 mi/h) to 113 km/h (70 mi/h). Trails may be constructed 
15 m (50 ft) from centerline of track where train speeds are 40 km/h (25 mi/h) to 80 km/h 
(50 mi/h), and 9 m (30 ft) from any branchline track with speeds of 40 km/h (25 mi/h) or 
less. No trails less than 9 m (30 ft) from centerline of track for any reason.” The Alaska 
Railroad Corporation rule of thumb for setbacks along main tracks is one railcar length, 
or 18 to 21 m (60 to 70 ft), unless careful analysis of the risks suggests otherwise. In con­
trast, the Maine Department of Transportation allows for trails to be set back a minimum 
of 5.5 m (18 ft) from track centerline, down to 4 m (12.5 ft) in constrained circumstances. 
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Other considerations when determining setback may be flying debris and maintenance 
access. Trains throw up debris from the roadbed, including rocks and other objects de­
liberately placed on the rails by trespassers. Fast-moving trains have thrown up large bal­
last rocks. Debris has been known to fall off trains, or, in some cases, to hang off rail cars. 
Railroad companies need access to tracks for routine and emergency maintenance, in­
cluding tie and ballast replacement, cleaning culverts, and accessing switches and control 
equipment. While most railroad companies have the ability to maintain tracks from the 
tracks themselves, it often is more cost effective and less disruptive to access the tracks 
from maintenance vehicles operating alongside the tracks. At a minimum, railroads need 
at least 4.5 m (15 ft) from the track centerline to provide reasonable access to their tracks. 

Further considerations when determining setback requirements may be physical con­
straints on or adjacent to railroad corridors, presence of separation techniques such as 
fencing, historical trespassing, and other problems. Finally, train densities can change at 
any time and location, and railroads require flexibility in their operations to meet customer 
requirements. Structures or right-of-way modifications that impede a railroad’s ability to 

1876 1876

3m (10ft) to 30m (100 ft)

3m (10ft)

1.5m (5ft)  high barrier within
separation. Vegetation on the
fence will buffer the visual
impact of passing trains.

0.6m
(2ft)

change or control its operations are unacceptable. 

Setback: Recommendations 

Because of the lack of consensus on acceptable setback dis­
tances, the appropriate distance must be determined on a case-
by-case basis (see Figure 5.10). Trail planners should incor­
porate into the feasibility study analysis an analysis of technical 
factors, including: 

• Type,  speed, and frequency of trains in the corridor; 

• Separation technique; 
FIGURE 5.10 Minimum RWT setback depends on specific • Topography;
situation 

• Sight distance; 

• Maintenance requirements; and 

• Historical problems.  

Another determining factor may be corridor ownership. Trails 
proposed for privately-owned property will have to comply 
with the railroad’s own standards. Trail planners need to be 
aware that the risk of injury should a train derail will be high, 
even for slow-moving trains. Discussions about liability as­
signment need to factor this into consideration. 

In many cases, adequate setback widths, typically 7.6 m (25 ft) 
or higher, can be achieved along the majority of a corridor. 
However, certain constrained areas will not allow for the de­
sired setback width. Safety should not be compromised at 
these pinch points – additional barrier devices should be used, 

FIGURE 5.11 Dynamic envelope delineation (MUTCD Fig. 
8A-1. Note: no dimensions given in MUTCD.) 
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1876 1876

3m (10ft) to 7.6m (25ft)

The trail should be sloped away from
the railway to provide proper drainage.

Barrier may be required if slope is
greater than 33%

3m (10ft)

The maximum slope between the track
roadbed and the trail should be 2 to 1.

1876 1876

1.2 m (4 ft) 
to 

1.8 m (6 ft)
fence with

baffling
material

3m (10ft) to 7.6m (25ft)

3m (10ft)
0.6m
(2ft)

4.6m (15ft)
Trail Easement

2.7m (9ft)

Drain

FIGURE 5.12 Minimum RWT setback – fill sections FIGURE 5.13 Minimum RWT setback – constrained sections 

(depending on situation) (depending on situation) 

and/or additional right-of-way purchased. In the case of high speed freight or transit 
lines, RWTs must be located as far from the tracks as possible and are infeasible if ade­
quate setbacks and separation cannot be achieved. 

At an absolute minimum, trail users must be kept outside the “dynamic envelope” of the 
track – that is, the space needed for the train to operate (see Figure 5.11). According to 
the MUTCD (Section 8), the dynamic envelope is “the clearance required for the train and 
its cargo overhang due to any combination of loading, lateral motion, or suspension fail­
ure.” It includes the area swept by a turning train. 

Relatively narrow setback distances of 3 m (10 ft) to 7.6 m (25 ft) may be acceptable to the 
railroad, RWT agency, and design team  in certain situations, such as in constrained areas, 
along relatively low speed and frequency lines, and in areas with a history of trespassing 
where a trail might help alleviate a current problem. The presence of vertical separation 
or techniques such as fencing or walls also may allow for narrower setback. 

Constrained Areas 

Many types of terrain pose challenges to an RWT design. While a 
railroad corridor may be 30 m (100 ft) wide or greater, the track 
section may be within a narrow cut or on a fill section, making 
the placement of an RWT very difficult. RWTs in very steep or 
rugged terrain or with numerous bridges and trestles simply may 
not be feasible given the need to keep a minimal setback from the 
tracks, meet ADA requirements, allow railroad maintenance ac­
cess, and still have a reasonable construction budget. Exceptions 
may exist where the RWT is accompanied by a solid barrier, ver­
tical separation, or ditch (see “Separation” section, page 66), in the 
case of very low speed/frequency railroad operations, or for very 
short distances (see Figures 5.12 and 5.13). The railroad com-

Setback (4.5m/15ft) and fencing
pany or agency should review the proposal to ensure that they will along the Showgrounds Pathway 
have adequate maintenance and emergency access to the tracks. RWT. Perth, Australia 
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No
28%

Yes
70%

Unknown
2%

NOTE: A “Yes” response does not necessarily indicate the presence of a full barrier. It includes 
some partial barriers and one instance of where a barrier is planned to be removed.

Source: Rails-to-Trails Conservancy

FIGURE 5.14 Percentage of existing RWTs with barrier 
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FIGURE 5.15 Barrier type, by percentage of existing RWTs 

Barrier plantings to reduce
lateral traffic. Plant selections
will be drought tolerant with low
maintenance requirements.

1876 1876

7.6m (25ft)

3m (10ft)0.6m
(2ft)

4.6m (15ft)

FIGURE 5.17 Trail separation example – using vegetation 
as a separation technique 

Type of Rail Service 
Lower speed and frequency train operations pose fewer hazards 
than higher speed and frequency trains. Numerous low speed line 
RWTs exist or are planned with relatively narrow setback distances. 
For example, Portland’s Springwater-OMSI Trail, along the 32 km/h 
(20 mi/h) Oregon Pacific Railroad, is designed 3.2 m (10.5 ft) from 
the centerline to edge of trail, with a fence 0.6 m (2 ft) from the train 
edge the entire length. The narrower setbacks may be acceptable 
depending on feasibility analysis, engineering judgment, the rail-
road’s future needs and plans, and liability assessment. 

Areas of Existing High Trespassing 
While trespassing on private railroad property is a common occur­
rence in virtually all settings, in some locations the historic pattern 
of trespassing has triggered legitimate concerns about the health, 
safety, and welfare of nearby residents. Research indicates that 
RWTs may be an effective tool to manage trespassing on corridors 
where it is physically difficult or impossible to keep trespassers off 
the railroad tracks. In these cases, the feasibility analysis may show 
that the risks of a narrower setback distance may be offset by the 
gains in trespassing reduction through trespasser channelization, 
using design features such as fencing or other barriers. 

Separation 
Over 70 percent of existing RWTs utilize fencing and other barriers 
such as vegetation for separation from adjacent active railroads and 
other properties (see Figures 5.14 and 5.15). Barriers include fenc­
ing (34 percent), vegetation (21 percent), vertical grade (16 percent), 
and drainage ditch (12 percent). The fencing style varies consider­
ably, from chain link to wire, wrought iron, vinyl, steel picket, and  
wooden rail (see Figure 5.16). Fencing height ranges from 0.8 m 
(3 ft) to 1.8 m (6 ft), although typical height is 0.8 to 1.2 m (3 to 4 ft). 

Most railroad companies require RWTs to provide fencing. Some 
railroad companies specify a requirement of 1.8 m (6 ft) high fenc­
ing, no matter what the setback distance is. Fencing may not be 
required where a significant deterrent to trespass is provided or 
exists. Examples include water bodies, severe grade differentials, 
or dense vegetation. 

Other barrier types such as vegetation, ditches, or berms are often 
used to provide separation (see Figure 5.17), especially where an 
RWT is located further than 7.6 m (25 ft) from the edge of the trail 
to the centerline of the closest track, or where the vertical separa­
tion is greater than 3 m (10 ft). In constrained areas, using a com­
bination of separation techniques may allow narrower acceptable 
setback distances. 
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FIGURE 5.16 Fencing styles 
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Grade separation along Schuylkill 
River Trail. Norristown, PA 

When on railroad property, RWT planners must adhere to the request or requirements 
for fencing by the railroad company or agency. When not on railroad property, RWT plan­
ners still should coordinate with the railroad to determine appropriate fencing. On all ex­
isting RWTs, the trail authority is responsible for barrier installation and maintenance. 

Vertical Separation 

Vertical or grade separation achieves many of the same benefits as horizontal separation, 
and is very common where an RWT is located along numerous cut and fill locations. For 
example, on a steep-fill section, the RWT may be located 6.1 m (20 ft) or more below the 
tracks (see Figure 5.12 on page 65). In a case such as this, the setback becomes less im­
portant than the amount of vertical separation, which effectively addresses the elements of 
debris and wind. In cases with vertical separation of greater than 3 m (10 ft), the danger 
from falling objects may increase. A fence or barrier at the top of the slope may help pre­
vent injuries on the trail below. 

Vegetation and Ditches 

Whether natural or planted, vegetation can serve as both a visual and physical barrier be­
tween a track and a trail (see Figure 5.17). The density and species of plants in a vegeta­
tive barrier determine how effective the barrier can be in deterring potential trespassers. 
A dense thicket can be, in some cases, just as effective as a fence (if not more so) in keep­
ing trail users off the tracks. Even tall grasses can discourage trail users from venturing 
across to the tracks, although less effectively than trees and shrubs. Planted barriers typ­
ically take a few years before they become effective barriers. Separation between the trail 
and the track may need to be augmented with other temporary barriers until planted trees 
and hedges have sufficiently matured. Neither vegetation nor fencing should block the 
public’s view of an approaching train at highway-rail crossings. 

Many rail corridors contain drainage ditches that run adjacent to the tracks. The deeper 
and wider these ditches, the more difficult they are to cross on foot, and thus the greater 
deterrent to trespassing they provide. The presence of water in the ditch also will act as a 
deterrent. Trail and track drainage needs must be considered in the design process. 

Fences and Walls 

Fences and walls are the most common type of physical barrier used in RWT corridors 
(see Figure 5.16). Most railroads will require or request fencing, for which the trail man­
agement agency will be responsible. The height and type of material used on these bar­
riers determines their effectiveness in discouraging trespassing and the resulting impact 
on required setback distance. A tall wall or fence constructed with materials that are dif­
ficult to climb should deter all but the most determined trespasser. 

From the trail manager’s perspective, fencing is a mixed blessing. Installing and main­
taining fencing is expensive. Improperly maintained fencing is a higher liability risk than 
no fencing at all. In all but the most heavily-constructed fencing, vandals find ways to 
cut, climb, or otherwise overcome fences to reach their destinations. Fencing also detracts 
from the aesthetic quality of a trail. 
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Dixon, CAAt-grade crossing. 

The visual quality of fencing materials can have an impact on illegal activities along RWTs. 
For example, the Canadian Pacific Railway (CPR) Police Service has had dramatic results 
in reducing crime and trespassing through RWT designs that improved the aesthetic qual­
ity of an area. Their approach relies on the concept of “Crime Prevention through Envi­
ronmental Design” (CPTED), meaning, “the proper design and effective use of the built 
environment can lead to a reduction in the incidence and fear of crime....” (Canadian 
Pacific Police Services, 2000) 

Particularly for an urban trail in an area with crime problems, it may be important to 
maintain visual access to the trail corridor from adjacent land uses, so that portions of 
the trail do not become isolated from public view. Fence design in these instances should 
not block visual access to the trail corridor. Tall fences that block views can cause sight 
distance problems at intersections with roadways — both for motorists who must be able 
to view approaching trains, and for trail 
users who need adequate sight lines to view 
traffic conditions. 

Railroad maintenance vehicles and/or emer­
gency vehicles may need fence gates in cer­
tain areas to facilitate access to the track 
and/or trail (see Figure 5.18). Fence design 
should be coordinated with railroad mainte­
nance personnel, as well as representatives 
from local utilities that extend along the cor­
ridor. Where trespassing is an issue, the 
fence should be at least 1.8 m (6 ft) tall, and FIGURE 5.18 Sample maintenance access transitions 
constructed of a sturdy material that is diffi­
cult to vandalize. 

Sliding Gate

In transition zone, gates will be provided to
allow access to railway maintenance road.

In constrained areas (less than 7.6m (25ft)
setback) railway maintenance access
provided either on 3m (10ft) Rail-with-Trail,
or on opposite side of track. Trail to be
closed as necessary for rail maintenance.

4.5m (15ft)

7.6m (25ft)

Railway Maintenance Road

In areas with greater than 7.6m (25ft)
setback, railway maintenance is on
separated roadway.

Rail-with-Trail

Fence

Fence

Railroad Track Crossings 

The point at which trails cross active tracks is the area of greatest concern to railroads, 
trail planners, and trail users. Railroad owners, the FRA, and State DOTs  have spent years 
working to reduce the number of at-grade crossings in order to improve public safety and 
increase the efficiency of service. RWT design should minimize new at-grade crossings 
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wherever possible. Modifying an existing highway-rail crossing may be an op­
tion. Alternative options are below-grade (underpass), or above-grade (overpass) 
crossings, which are  expensive and typically have been installed in limited cir­
cumstances, such as: 

• Locations where an at-grade crossing would be extremely dangerous due to fre­
quent and/or high speed trains, limited sight distances, or other conditions; and 

• Locations where trains are regularly stopped at the crossing point, effectively 
blocking the trail intersection for long periods of time. 

Some government agencies and railroad owners have adopted policies of no new at-
grade crossings. In these cases, using existing crossings or building grade-separated 
crossings may be the only alternatives. Also, many railroads are actively working to 
close existing at-grade crossings to improve safety, reduce maintenance costs, im­
prove operating efficiency, and reduce liability exposure. The RWT feasibility analy­
sis should carefully evaluate all proposed crossings, with consideration given to: 

• Train frequency and speed; 

• Location of the crossing; 

• Specific geometrics of the site (angle of the crossing, approach grades, sight 
distance); 

• Crossing surface; 

• Nighttime illumination; and 

• Types of warning devices (passive and/or active) 
Crossing treatment on the 

The railroad company or agency, and State DOT or Public Utility Commission, will need suburban rail network in Perth. 
Gates automatically close when to approve any new crossings, the design of which must be in compliance with the 

train is approaching. Users are MUTCD.1 Relevant information also is contained in the Railroad-Highway Grade Crossing 
alerted to the presence of Handbook (FHWA, 1986) and U.S. DOT Highway-Rail Grade Crossing Technical Working 
approaching train by flashing Group (TWG) document, Guidance on Traffic Control Devices at Highway-Rail Grade Cross-
lights and audible bells. Gates ings (FHWA, 2002). 
remain locked until trains have 
passed. Perth, Australia More than half the existing RWTs in the U.S. include some sort of track crossing, mostly 

at-grade (RTC, 2000). The Bugline Trail, Wisconsin, Southwest Corridor Park Trail, Mass­
achusetts, Illinois Prairie Path, and Rock River Recreation Path, Illinois, have overpasses 
or bridges. The Tony Knowles Coastal Bicycle Trail, Alaska, has tunnels under the tracks, 
and the Springwater Corridor Extension, Oregon, will have two pedestrian underpasses. 

Existing at-grade crossings typically have some sort of passive warning devices — rail­
road “crossbucks” or railroad crossing signs (see Figure 5.24 on page 75). Examples are on 
the Burlington Waterfront Bikeway, Vermont, and Lehigh River Gorge Trail, Pennsylvania. 
Several have active warning devices such as gates or alarms. Planned trails such as the 
Blackstone River Bikeway, Rhode Island, and Springwater Corridor Extension, Oregon, will 
have higher quality at-grade crossings, with a full complement of automatic gates, warning 
alarms, and signage. 

1 The MUTCD (see Appendix A for detailed definition) contains standards for signs, pavement markings and other de­
vices used to regulate, warn, or guide traffic, placed on, over, or adjacent to a street, highway, pedestrian facility, or bike­
way by authority of a public agency having jurisdiction. 
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Many bicycle routes in Perth, Australia, cross perpendicular to the suburban railway lines. 
Gates automatically close upon the approach of a train. When open, they have a straight-
through passage, facilitating ease of movement by cyclists, pedestrians, and people in 
wheelchairs. The crossings feature warning bells and flashing lights. Westrail also uses a 
variety of pavement treatments to offer visual cues to both motorists and trail users in 
transit station areas (Maher, 2000). 

Location of the Crossing 

Trail-rail grade crossings should reduce illegal track crossings by channelizing users to 
safer crossing areas. Crossings must not be located where trains may be regularly stopped, 
since this would encourage trail users to cross between or under railroad cars — an 
extremely dangerous and unacceptable movement. Crossings should not be located on 
railroad curves where sight lines are poor. When new at-grade crossings are not permit­
ted, the RWT design will need to channelize users to cross the tracks at roadway locations 
(see p. 81) or develop a grade-separated crossing (p. 79). 

Sight Distance 

Adequate sight distance is particularly important at trail-rail intersections that do not 
have active warning devices such as flashing lights or automatic gates. Bicyclists, pedes­
trians, and other trail users should be given sufficient time to detect the presence of an 
approaching train and either stop or clear the intersection before the train arrives. 

Three elements required for safe movement of trail users across the railroad tracks are as 
follows: 

1. Advance notice of the crossing 

The first element concerns stopping sight distance, a common consideration in highway 
intersection design. The stopping sight distance is that distance required for a trail user 
to see an approaching train and/or the grade crossing warning devices at the crossing, 
recognize them, determine what needs to be done, and then come to a safe stop at a point 
4.5 m (15 ft) clear of the nearest rail, if necessary. This point usually will be marked by a 
pavement marking in advance of the crossing. This sight distance is measured along the 
trail, and is based on a trail user traveling at a given speed, and coming to a safe stop as 
discussed above. 

2. Traffic control device comprehension 

The second element involves the recognition of the grade crossing warning devices by the 
approaching user. Trail users should be reminded of the meaning of all traffic control de­
vices in use at grade crossings, such as the fact that the familiar crossbuck sign should be 
treated as a YIELD sign at any crossing, or that flashing lights without gates, when flash­
ing, are to be treated the same as a STOP sign. 

3. Ability to see an approaching train 

The third element concerns the trail user’s ability to see an approaching train in order to 
decide whether it is safe to cross. Two different kinds of sight distance considerations are 
involved for safe movement across the crossing. This third element involves the sight 

Crossing at the City West Station. 
Perth, Australia 

Transit station pedestrian 
crossing. Beaverton, OR 
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distance available in advance of the crossing, as well as the sight distance present at the 
crossing itself. 

Approach sight distance (also known as corner sight distance) involves the clear sight 
line, in both directions up and down the tracks, that allows a trail user to determine in 
advance of the crossing that there is no train approaching and it is safe to proceed across 
the tracks without having to come to a stop. These sight triangles, dependent upon both 
train speed and trail user speed, are determined as shown in the Railroad-Highway Grade 
Crossing Handbook (FHWA, 1986). 

Often these sight triangles are obstructed by vegetation, topography, or structures. If the 
clear sight triangles for a given trail user speed (bicyclists and skaters will probably be 
the fastest trail users) cannot be obtained, then the trail should have additional warning 
signs or a reduced speed limit posted in advance of the crossing. As another treatment, 
based upon local conditions and engineering judgment, STOP or YIELD signs may be 
placed on the trail at the crossing. 

Clearing sight distance, which applies to all crossings without automatic gates, involves 
the clear sight line, in both directions up and down the tracks, present at the crossing it­
self. A trail user stopped 4.6 m (15 ft) short of the nearest rail must be able to see far 
enough down the track in both directions to determine if the user can move across the 
tracks, to a point 4.6 m (15 ft) past the far rail, before the arrival of a train. At crossings 
without gates that have multiple tracks, the presence of a train on one track can restrict a 
trail users’ view of a second train approaching on an adjacent track. 

A more detailed treatment of the sight distance problem at grade crossings may be found in 
the document titled, Guidance on Traffic Control Devices at Highway-Rail Grade Crossings 
(FHWA, 2002). 

In addition, most railroad safety books and FRA Roadway Worker Safety rules (49 CFR 
214), specify that upon the approach of a train, enough warning must be given to allow 
someone on the track to have at least 15 seconds between the time they are clear of the 
track and the time the train gets to their location. This criterion applies only to railroad 
personnel who are working within their established limits and are prepared to vacate the 
track structure with proper warning. Because the average trail user most likely is not fa­
miliar with the hazards of rail operations, they would need additional warning time. 

Approach Grades and Angle 

The AASHTO Bike Guide and ADA specify grade requirements for shared use paths. Trail 
grades over 5 percent are allowed for short distances in specific circumstances. Grades 

Existing Railroad Track

Existing Grade at
Railroad Ballast

Fill

Slope of trail crossing no to
exceed 5% maximum

over five percent are not recommended for crossing approaches. 
In general, the trail approach should be at the same elevation as 
the track (see Figure 5.19). Steep grades on either side of the 
track can cause bicyclists to lose control, may distract trail users 
from the conditions at the crossing, and may block sight lines. 

Another critical issue, particularly for bicyclists and people 
with disabilities, is the angle of crossing. The AASHTO Bike 
Guide makes the following statement with respect to the cross-

FIGURE 5.19 Approach grade at at-grade crossings ing angle of a bikeway at a railroad track: 
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FIGURE 5.20 45° Trail-rail crossing FIGURE 5.21 90° Trail-rail crossing 

“Railroad-highway grade crossings should ideally be at a right angle to the rails….The 
greater the crossing deviates from this ideal crossing angle, the greater is the potential for 
a bicyclist’s front wheel to be trapped in the flangeway, causing loss of steering control. If 
the crossing angle is less than approximately 45 degrees, an additional paved shoulder of 
sufficient width should be provided to permit the bicyclist to cross the track at a safer an­
gle, preferably perpendicularly.” 

Flangeway is the term used for the space between the rail and the pavement edge. The 
standard flangeway width for commuter and transit railroad crossings is 63.5 mm 
(2.5 in), 76.2 mm (3 in) for freight railroads. These widths are greater than many bicycle 
tires and wheelchair casters. For this reason, acute angle crossings are not recommended. 
Also, according to the AASHTO Bike Guide, where active warning devices are not used to 
indicate an approaching train, the trail should cross the railroad at or nearly at right an­
gles and where the track is straight (see Figures 5.20 and 5.21). Where the track is not 
straight (e.g., on a curve), complications exist: sight distance is restricted and the rails 
may be at different levels. 

Crossing Surface 

The smoothness of the crossing surface has a profound effect on trail users. Sudden 
bumps and uneven surfaces can cause bicycle riders to lose control and crash. For pedes­
trians, trails that are designed to meet ADA Accessibility Guidelines must maintain a 
smooth surface. 

Dual track grade crossing. 
Burlington, VT 
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The AASHTO Bike Guide notes, “The crossing surface itself should have a riding quality 
equivalent to that of the approach roadway. If the crossing surface is in poor condition, the 
driver’s attention may be devoted to choosing the smoothest path over the crossing. This 
effort may well reduce the attention given to observance of the warning devices or to the 
primary hazard of the crossing, which is the approaching train.” 

Trail managers will be responsible for providing railroads with slip-resistant crossing sur­
face materials. Accessible trails should include tactile warning strips prior to at-grade 
track crossings. 

Nighttime Illumination 

Most RWTs will experience nighttime use. Thus, lighting should be provided at trail-rail 
crossings. Refer to: American National Standard Practice for Roadway Lighting, ANSI 

IESNA RP-8 (available from the Illuminating Engineering So­
ciety) for the appropriate location of lighting fixtures and rec­
ommended lighting levels for rail grade crossings. Lighting 
must be shielded from the locomotive engineer’s view for safety 
reasons. 

Crossing Warning Sign
(W10-1)

7.6m
(25ft)

ROW Fence

RR Pavement
Marking

Concrete or rubberized pad,
flush with rail top

4m
(12ft)

Crossing Warning Sign
(W10-1)

RR Crossing Sign
(R15-1)

4.0m (15ft)

RR Crossing Sign
(R15-1)

30.0m (50ft)

R      R

R      R

R      R

R      R

Advanced Warning Devices at Trail-Rail Crossings 

A variety of warning devices are available for trail-rail cross­
ings. In addition to the MUTCD standard devices, there are in­
novative treatments developed to encourage cautious bicyclist 
and pedestrian behavior. This report does not sanction one 
type of treatment as being appropriate for all trail-rail cross­
ings, nor does the MUTCD provide a standard design for high-

FIGURE 5.22 Crossing equipped with passive warning devices way-track crossings. The MUTCD states, “Because of the large 

(MUTCD Fig. 9B-3)	 number of significant variables to be considered, no single stan­
dard system of traffic control devices is universally applicable 
for all highway-rail grade crossings. The appropriate traffic con­
trol system should be determined by an engineering study in­
volving both the highway agency and the railroad company.” 
The same applies for trail-rail intersections. 

There are two categories of advanced warning devices: 

• Passive warning devices: signs and pavement markings that 
alert trail users that they are approaching a trail-rail crossing 
and direct them to proceed with caution and look for trains 
(see Figure 5.22). 

• Active warning devices: advise trail users of the approach or 
presence of a train at railroad crossings. These consist of 
bells, flashing lights, automatic gates, and other devices that 
are triggered by the presence of an approaching train (see 

FIGURE 5.23 Crossing equipped with active warning devices Figure 5.23). 
and fencing 
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FIGURE 5.25 MUTCD-approved railroad warning signs that may be appropriate for RWTs 

P A S S I V E  W A R N I N G  D E V I C E S  A T  T R A I L - R A I L  C R O S S I N G S .  Trail-rail crossings with passive warn­
ing devices should comply with the MUTCD’s minimum recommended treatment at high-
way-rail grade crossings. The MUTCD states, “One Crossbuck sign shall be installed on 
each highway approach to every highway-rail grade crossing, alone or in combination with 
other traffic control devices.” 

The MUTCD also states that “if automatic gates are not present and if there are two or 
more tracks at the highway-rail grade crossing, the number of tracks shall be indicated on 
a supplemental Number of Tracks (R15-2) sign…mounted below the Crossbuck sign...in-
dicated in Figure 8B-1” (see Figure 5.24). Refer to the MUTCD for further guidance re­
garding the location and retroreflectivity of these signs. 

S T O P  A N D  Y I E L D  S I G N S .  The MUTCD makes the following statements about the use of 
STOP and YIELD signs at highway-rail grade crossings: “At the discretion of the responsi­
ble State or local highway agency, STOP or YIELD signs may be used at highway-rail grade 
crossings that have two or more trains per day and are without automatic traffic control 
devices.” This may also apply to trail crossings, as determined by an engineering study 
that considers the number and speed of trains, sight distances, the collision history of the 
area, and other factors. Willingness of local law enforcement personnel to enforce the 
STOP signs should also be considered. 

W A R N I N G  S I G N S .  The MUTCD also contains a number of warning signs that can be used to 
indicate the configuration of the upcoming crossing, or to otherwise warn users of special 
conditions. Warning signs that may be appropriate for RWTs are shown in Figure 5.25 
(MUTCD signs: W10-1, W10-2, W10-3, W-10-4, W10-8, W10-8a, R15-1, R15-2, R15-8, and 
W10-11). 

FIGURE 5.24 Highway-rail 
crossing (Crossbuck) sign 
(MUTCD Fig. 8B-1) 
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PLEASE
WALK
BIKE

ACROSS
TRACKS

Irvine, CAATSF Trail. Steel Bridge Riverwalk. Portland, OR 

LOOK BOTH
WAYS

tri-met

MIRE PARA LOS
DOS LADOS

tri-met

Signs at transit stations. Portland, Beaverton, and Gresham, OR 

Oregon Department of Kennebec River Rail-Trail. 
Transportation Farmingdale, ME 

FIGURE 5.26 Sample trespassing and other signs 
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O T H E R  S I G N S .  The MUTCD applies to all signs that may be con­
sidered traffic control devices, whether on roads or on shared 
use paths. The MUTCD provides specifications on sign shapes, 
colors, dimensions, legends, borders, and illumination or 
retroreflectivity. Section 2A.06 notes that “State and local 
highway agencies may develop special word message signs in 
situations where roadway conditions make it necessary to pro­
vide road users with additional regulatory, warning, or guid­
ance information.” 

The MUTCD does not apply to signs that are not traffic control 
devices, such as “No Trespassing” signs and informational 
kiosks. Many jurisdictions require “No Trespassing” signs to be 
posted along railroad tracks. Figure 5.26 offers some exam­
ples. 

Some railroad companies, trail developers, and State and  local governments haved used a 
number of non-MUTCD-compliant supplemental signs at rail-trail crossings. Some of 
these have been adopted in State or local roadway and/or trail design guidelines. While 
these signs may provide information not available on MUTCD-compliant signs, they may 
increase the trail developer’s or community’s liability exposure. 

The MUTCD recognizes that continuing advances in technology will produce changes that 
will require updating the Manual, and that unique situations often arise for signs and 
other traffic control devices that may require changes. Section 1A.10 describes the pro­
cedure to request changes or permission to experiment with traffic control signs and de­
vices. Guidelines may be found on the Internet at http://mutcd.fhwa.dot.gov. 

P A V E M E N T  M A R K I N G S .  In the case of paved trails, pavement markings also are required by 
the MUTCD. At a minimum, they should consist of an “X,” the letters “RR,” and a stop bar 
line (see Figure 5.25, on page 75 and Parts 8 and 9 of the MUTCD). 

For unpaved trails, consideration should be given to paving the approaches to trail-rail 
crossings, not only so that appropriate pavement markings can be installed, but also to 
provide a smooth crossing. If it is not possible to pave the approaches, additional warn­
ing devices may be needed. 

A C T I V E  W A R N I N G  D E V I C E S  A T  T R A I L - R A I L  C R O S S I N G S .  An engineering study is recommended 
for all trail-rail crossings to determine the best combination of active safety devices. Key 
considerations include train frequency and speed, sight distance, other train operating char­
acteristics, presence of potential obstructions, and volume of trail users. 

Active traffic control systems advise trail users of the approach or presence of a train at 
railroad crossings. Information regarding the appropriate uses, location, and clearance 
dimensions for active traffic control devices can be found in Part 8 of the MUTCD. In 
addition, Part 10 of the MUTCD contains specific recommendations for pedestrian and 
bicycle signals at light rail transit tracks, and should be referred to in cases where trails 
cross light rail transit corridors. Applicable diagrams from the MUTCD are shown in 
Figures 5.27-5.30. 

Active warning devices at 
Burlington Waterfront Bikeway 
track crossing. Burlington, VT 
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FIGURE 5.27 Composite drawing showing clearances for FIGURE 5.28 Typical light rail transit flashing light signal 
active traffic control devices at highway-rail grade crossings assembly for pedestrian crossings (MUTCD Fig. 10D-2) 
(MUTCD Fig. 8D-1) 

FIGURE 5.29 Typical pedestrian gate placement behind the FIGURE 5.30 Typical pedestrian gate placement with 
sidewalk (MUTCD Fig. 10D-3) pedestrian gate arm (MUTCD Fig. 10D-4) 

See Guidance on Traffic Control Devices at Highway-Rail Grade Crossings (FHWA, 2002) 
for information about selection of traffic control devices. Flashing light signals combined 
with swing gates (see Figure 5.30) may be needed in cases of high speed transit or freight 
rail, limited sight distance, multiple tracks, and temporary sight obstructions, such as 
standing freight cars. 
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Railroad and trail planners should note that the same controls 
that generally keep a motor vehicle from crossing a track may 
not keep a pedestrian or bicyclist from proceeding through a 
crossing. People on foot or bicycle are reluctant to stop at barri­
ers and will often find a way to proceed over, under, or around 
barricades. Photos of effective treatments in Perth, Australia, 
are shown on pages 70 and 71 and in Burlington, Vermont, 
on page 73. 

Grade-Separated Trail-Rail Crossings 

Grade-separated crossings (overpasses and underpasses) can 
eliminate conflicts at trail-rail crossings by completely sepa­
rating the trail user from the active rail line. Refer to the 
AASHTO Bike Guide for specific design dimensions and light­
ing requirements for bridges and tunnels. In the case where a 
bridge or tunnel is constructed, a number of issues should be 
considered: 

•	 E X I S T I N G  A N D  F U T U R E  R A I L R O A D  O P E R A T I O N S :  Bridges and un­
derpasses must be designed to meet the operational needs 
of the railroad both in present and future conditions. Trail 
bridges should be constructed to meet required minimum 
train clearances and the structural requirements of the rail 
corridor (see Figures 5.31-5.34 and photos on page 80). 

•	 S A F E T Y  A N D  S E C U R I T Y  O F  T H E  F A C I L I T Y :  Dark, isolated under­
passes that are hidden from public view can attract illegal 
activity. Underpasses should be designed to be as short as 
possible to increase the amount of light in the underpass, 
and to decrease its attractiveness as a hidden area. Ade­
quate lighting is extremely important. 

•	 M A I N T E N A N C E :  The decision to install a bridge or underpass 
should be made in full consideration of the additional 
maintenance these facilities require. 

According to the AASHTO Bike Guide, the minimum clear 
width of the pathway on a bridge or through a tunnel should be 
the same as the width of the approach path, with an additional 
0.6 m (2 ft) clear area on the sides. Therefore, the minimum 
width of a tunnel or bridge on a 3 m (10 ft) wide trail would be 
4.3 m (14 ft). Vertical clearance should be 2.4 m (8 ft) mini­
mum (see Figures 5.31 and 5.32). Larger horizontal and ver­
tical clearances may be needed for certain types of mainte­
nance and emergency vehicles. Future needs for vehicular 
access should be taken into consideration when designing these 
structures. 

Vertical Clearance SignRailway

RWT

4m (12ft)

2.4m (8ft) min.
4m (12ft) pref.

FIGURE 5.31 RWT culvert under tracks 

RWT

4m (12 ft)
Native plant on embankments
Slope maximum 2 to 1

Railway

Drainage swale

2.4m (8ft) minimum
4m (12ft) preferred

FIGURE 5.32 RWT track undercrossing 
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FIGURE 5.33 RWT track overcrossing 

1876 1876

7.0m (23ft)
Minimum

FIGURE 5.34 RWT track overcrossing (meets Amtrak required 
clearance height for non-electrified track) 
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SAMPLE UNDER- AND OVERCROSSINGS 

Apple Tree Park. Vancouver, WA Platte River Trail. Denver County, CO 

Tony Knowles Coastal Rail Trail. Anchorage, AK Trail-rail overcrossing. San Luis Obispo, CA 

Bridge over Union Pacific tracks. Portland, OR 
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Approach grades for bridges and tunnels on RWTs should follow AASHTO guidelines and 
typically also must meet ADA Accessibility Guidelines. Again, a greater than five percent 
grade is not recommended. 

Trail-Roadway Crossings 

At-grade crossings between RWTs and roadways can be complex areas that require the 
designer to think from the perspective of all types of users who pass through the inter­
section: trains, motorists, bicyclists, and pedestrians. Trail-roadway intersections are cov­
ered in detail by both the AASHTO Bike Guide and the MUTCD. While these manuals do 
not specifically recommend solutions for RWT crossings, they cover basic safety principles 
that apply to all trail-roadway crossings. 

Variables to consider when designing trail-roadway intersections include right-of-way 
assignment, traffic control devices, sight distances, access control, pavement markings, 
turning movements, traffic volume, speed, and number of lanes. Refer to the AASHTO 
Bike Guide for information regarding these design factors. All traffic control devices 
should comply with the MUTCD. 

At-Grade Trail-Roadway Crossings 

At-grade RWT-roadway crossings can be very complex, and typically require the involve­
ment of both the roadway agency and the railroad company. Each must be evaluated on 
a case-by-case basis through engineering analysis. There are essentially three different 
methods for handling RWT-roadway crossings: 

1. Reroute shared use path users to nearest signalized intersection (see Figure 5.35). 

2. Provide new signal across roadway (see Figure 5.36). 

3. Provide unprotected crossing (see Figure 5.37). 

Another possible scenario (although undesirable) has trail users crossing both the road­
way and tracks, as shown in Figure 5.38. 

The appropriate crossing design should be selected based on the following considerations: 

• Motor vehicle traffic must be warned of both types of crossings (railroad and trail). 
Care should be taken to keep warning devices simple and clear; ambiguous and overly 
complicated signage and pavement markings can distract both motorists and trail 
users. 

• If  a pedestrian-actuated traffic signal is warranted at a mid-block RWT-roadway 
crossing, the traffic signal should be integrated with the design of active warning 
devices that alert motorists of an approaching train. This may require redesigning 
several aspects of the intersection. 

• If  automatic gates are used,  they should be placed in between the trail crossing and 
the active track(s). Where possible, the stop bar on the highway should be located be­
hind the trail crosswalk. However, if the crossing is located at too great a distance 
from the automatic gate, the stop bar should be placed in a standard position near the 
gate, and a DO NOT BLOCK CROSSWALK sign should be used at the trail crossing. 
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FIGURE 5.35 Roadway crossing type 1 FIGURE 5.36 Roadway crossing type 2 (new signal) 
(reroute to nearest intersection) 
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• If  active warning devices are used, the trail should be integrated so that trail users are 
made aware of approaching trains. Trail users may either elect to travel straight 
across the road, or may exit the trail and continue their journey on the roadway (see 
Figure 5.39). In this scenario, turning movements towards the tracks could be haz­
ardous if the trail user is unable to view active warning devices, or if sight distances 
are restricted. The angle of approach for these trail users must be considered when 
placing warning devices. In cases where flashing light signals (post mounted) are 
used, it is important to locate these devices so that they can be seen by trail users, and 
to include bells and other audible warning devices to provide additional warning to 
bicyclists and pedestrians. 

RWT-roadway intersections can become further complicated if the railroad crosses the 
roadway at an angle. Angled trail crossings are not recommended, because they increase 
the amount of exposure time in the roadway for pedestrians and bicyclists. Figure 5.40 
shows an alternative crossing design that permits trail users to cross perpendicular to the 
roadway at angled rail-highway crossings. 

Grade-Separated Trail-Roadway Crossings 

Where a proposed RWT will cross a major roadway or highway carrying heavy traffic 
volumes (typically more than 20,000 vehicles per day) and/or traffic at speeds greater than 
72 km/h (45 mi/h), grade separation should be explored regardless of where the adjacent 
railroad tracks are located. The design issues related to these undercrossings or overcross­
ings are the same as on all other shared use paths, and are not covered in this document. 
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Buried fiber optic cable, 
Washington & Old Dominion Trail. 
Fairfax County, VA 

Utilities 

Many railroad corridors have utilities that may impact the design, location, or even the 
feasibility of an RWT. At a minimum, most railroads have their own internal communi­
cation systems within their corridors, sometimes located on poles. Any RWT would need 
to either avoid these poles with a 0.9 m (3 ft) minimum shy distance, or relocate per spec­

ification by the railroad. Sometimes a railroad will require that 
their relocated communication lines be placed underground in 
new conduit. 

Surface and subsurface utilities often are located within the rail­
road right-of-way, impacting the location and construction of the 
RWT. Utilities include active and abandoned railroad communi­
cations cable, signal and communication boxes, fiber optic cable, 
and water, sewer, and telephone lines. Added to this mix, utilities 
may run parallel to the tracks on one or both sides of the right-of-
way, and across, under, or over the tracks.  

Trails may need to be closed temporarily to allow utility work. The 
manager of the Cottonbelt Trail, Texas, notes that one should ex­
pect to have interference when utilities companies perform main­

tenance. The Explorer Pipeline Company required the Cottonbelt Trail to have removable 
pavement where the trail crossed its pipeline. 

Part of the initial feasibility study should identify existing utilities in the corridor, and 
specifically (a) ownership, (b) location, and (c) easement agreements with the railroad 
company. While it is not uncommon for a trail to be constructed on top of a subsurface 
utility, there typically are easement restrictions and requirements that will impact the trail 
design and location. 

RWTs may be constructed with buried conduit under or adjacent to the path to serve 
existing or future utilities. Inclusion during initial construction saves immense cost and 
disruption in the future. Conduit and auxiliary equipment (e.g., repeater boxes) should 
not present slip, trip, or fall opportunities; visual obstacles; or other hazards. The feasi­
bility study staff also must meet with both the railroad and utility representatives to dis­
cuss their concerns and requirements. 

Accommodating Future Tracks and Sidings 

A fundamental part of any feasibility study is to examine the possible addition of tracks 
and sidings (railroad car storage facilities) that will have a direct impact on RWT design 
and alignment. The RWT team must seek out information from the railroad operator 
about their future expansion plans. In many cases, a railroad company may not have spe­
cific plans but may want to reserve room to expand in the future if it is needed. In other 
cases, a railroad operator may have specific plans for additional tracks, either in the short, 
mid, or long term. In still other cases, a transit agency may have long range plans to use 
part of or the entire corridor for future transit or commuter rail service. Should a rail­
road company choose to reserve their land for future rail service, the trail project is not 
likely to be feasible. 
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The issue of sidings must be clearly understood by the 
feasibility study team. A corridor may have existing 
but unused sidings that either may be removed if the 
land use has changed significantly or reactivated if a 
new tenant comes in or economic conditions change. 
If a rail corridor traverses an industrial or warehouse 
area, there may be a future need for sidings to serve 
future land uses, impacting the proposed RWT. 

Should additional tracks or sidings seem a possibility 
even in the long term, they should be included in the 
RWT design process. In flat terrain, the additional 
tracks should be located on the opposite side of the 
proposed RWT, and there should be sufficient room 
for additional tracks if the RWT is located at the ex- Siding on site of proposed RWT. 
treme edge of the right-of-way. In terrain with cut and fill, any future tracks would prob- Kelowna, BC, Canada 
ably require major engineering that would most likely impact the overall feasibility of the 
RWT project within a typical 30 m (100 ft) wide railroad right-of-way. 

An RWT should be located and designed so as to avoid active, potentially active, or po­
tential future sidings. RWTs that cross sidings pose operational and safety problems for 
the trail manager and rail operator alike. A railroad corridor with numerous sidings or in­
dustrial spurs on both sides of the existing tracks would be a poor choice for an RWT 
project. 

One option is to include language in the easement or license agreement to remove or re­
locate the RWT in the event that there is a future need for additional tracks or sidings. If 
there are firm plans for future expansion, this is not likely to be attractive to the railroad 
operator because of the anticipated difficulty in removing or rerouting a popular path in 
the future. 

Trestles and Bridges 

As part of the feasibility analysis, the presence of trestles and bridges will loom large as 
major constraints to the overall feasibility of a project. Virtually all railroad corridors will 
have at least some minor bridges or culverts either as part of the local drainage system, or 
the local network of streams and creeks. In some cases, there will be longer trestles and 
bridges over roadways, highways, rivers, and canyons. In almost all cases, the railroad 
structures are not designed to accommodate pedestrians at all, let alone bicycles, and rep­
resent a real safety hazard (and attraction) to trespassers. 

Simple prefabricated bridges over small streams, culverts, and other waterways are not 
expensive items. However, they may impact a project’s feasibility from an environmental 
perspective. A new bridge over a highway or on a long trestle may have enormous costs, 
and may, in some cases, represent the single greatest cost on the project. 
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Harpers Ferry Bridge. Harpers Steel Bridge Riverwalk. Portland, OR 
Ferry, VA 

RWT bridges constructed over existing roadways or over corridors with existing trails or 
bikeways pose a special problem. Neighboring residents will want access to the RWT. 
Since these connections will need to meet ADA gradient standards, they may involve the 
construction of an expensive series of ramps. 

Will require partial reconstruction of existing
structure and civil/structural engineering.
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C D
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Engineers can design solutions to virtually any 
challenge (see Figure 5.41). Any trail facility that 
is to be appended to or otherwise incorporated into 
a bridge must maintain full and unimpeded bridge 
maintenance and inspection access. Some of  the  
prototype solutions for RWTs on corridors with 
bridges and trestles include: 

• Use of existing structure. In rare cases, an RWT has 
been constructed on an existing railroad structure. 
This has been accomplished in Harper’s Ferry, 
Virginia, on a bridge where there were formerly two 
or more tracks by placing the RWT on the roadbed 
of the abandoned tracks and placing a security fence 
between the active tracks and the RWT. The other 
option is to construct a bridge structure that is at­
tached in some fashion to the existing trestle or 
bridge. For example, in May 2001, the City of Port­
land, Oregon, opened a new 3 m (10 ft) shared use 
path, cantilevered onto the south side of the Union 
Pacific Railroad bridge (Steel Bridge), set back 3.7 m 
(12 ft) from the track centerline. While this may be 
less expensive than constructing a completely new 

FIGURE 5.41 Trestle options 
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Single track tunnel on Lake Oswego Trolley Line. Lake Oswego, OR 

bridge, the RWT developer must be prepared to make structural integrity improvements 
to the existing bridge and assume maintenance and liability protection for the new com­
bined structure. 

•	 Construct a new structure. This offers a simple, independent solution, rather than 
trying to utilize an existing railroad structure. This option may be very expensive 
and may have negative environmental impacts if it requires construction in a ripar­
ian or other habitat. If constructed over a State highway, it may require time-consum-
ing permit approvals and strict design standards. 

Tunnels 

The presence of a single track tunnel on a railroad corridor typically signifies that an RWT 
is not feasible, at least on the segment where the tunnel is located. There is one known 
case of a shared rail-with-trail single track tunnel: the York County Heritage Trail, Penn­
sylvania, which is along an active tourist rail line. Trail users are required to wait when a 
train is in the tunnel. Usually, tunnels are constructed where the topography dictates the 
need for going through — rather than around — terrain, meaning that an RWT would 
have a difficult time traversing over or around the obstacle to avoid a tunnel. 

In some cases, there is a roadway or even an abandoned railroad roadbed that could be 
used by an RWT to circumvent the tunnel. If the terrain is not too steep, an RWT could go 
over the tunnel hill. While multi-track tunnels with one or more abandoned tracks could 
conceivably serve dual usages, no known examples exist, and they should be avoided. 
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Environmental Constraints 

If necessary, a full environmental assessment per State and Fed­
eral National Environmental Policy Act (NEPA) law should be 
included as part of the RWT feasibility study. Environmental 
impacts are not relegated simply to riparian zones, but include 
impacts to: 

a. public safety 

b. public expenditures 

c. light and glare 

d. geology, soils, and hydrology 

e. biological resources 

f. land use 

g. cultural resources 

h. aesthetics 

i. transportation and circulation 

j. economics 

k. parks and recreation 

l. noise levels 

The environmental analysis should be conducted simultane­
ously with feasibility study to allow for the RWT design team to 
minimize or avoid significant environmental impacts. The en­
vironmental analysis also provides a good forum for public in­
put and political approvals, and usually is a required activity if 
the project is to receive Federal funding. In some cases, the en­

vironmental impacts of a proposed RWT will be so great as to make the project unfeasible. 
In other cases, the RWT enhances a previously damaged site. Thus, the impacts may be 
offset by proposed mitigation and/or by the benefits accrued from the project. 

Support Facilities and Amenities 

Any new trail or RWT will require support facilities both to enhance the experience for 
trail users, and to serve basic user and manager needs. Some of these items could be con­
sidered extra amenities that are dependent on local desires and available budget, while oth­
ers should be considered basic elements of any new trail facility. 

Trailheads and Parking Areas 

Any new RWT will attract people to drive and park near the facility, potentially impacting 
local neighborhoods. The best design will locate trailheads, parking areas, restrooms, 
and other such facilities on the same side of the tracks as the trail, so as to avoid addi­
tional crossings. A feasibility study should include a full analysis of access to the trail 
from local communities, along with a projection of future annual and peak day usage and 

RWT designs must take 
endangered species into 
consideration. Victorville, CA 
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Tree-lined RWT looking north. Burlington, VT 

modal split. Should the analysis reveal that a significant number of 
vehicles will be parking near the RWT, a trailhead parking scheme 
should be included as part of the feasibility study (see Figure 5.42). 

Aside from parking, trailheads also offer amenities such as rest­
rooms, entrance signs and maps, kiosks, drinking fountains, and 
other features. These and other details of trailheads are a standard 
element of most trail master plans and trailhead designs, which any 
landscape architecture or trail planning firm should provide as part 
of the design team. 

Landscaping 

Landscaping is an optional but very important element of any new 
trail. Landscaping offers not only visual relief and aesthetic bene­
fits, but also shelter from the sun and wind and assistance with ero­
sion control. At the same time, landscaping can be very expensive to 
install and maintain, especially if it requires irrigation. Most trail 
projects utilize landscaping at gateways and specific areas along the 
corridor, and often use native, drought-resistant species that do not 
require irrigation. Landscaping should not interfere with track and FIGURE 5.42 Trailhead and parking design 

roadbed maintenance or the visibility of motorists, trail users, or the 
locomotive engineers at crossings. 
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Lighting on Eastbank Esplanade. 
Portland, OR 

Trailhead sign, Burlington Water­
front Bikeway. Burlington, VT 

Signing on the Railroad Trail. 
Gaylord, MI 

Drainage 

Railroad corridors are constructed with both lateral and cross roadbed drainage in order 
to keep water off of the tracks and ballast. Lateral drainage consists of the ditches seen 
parallel to most tracks and ballast, which in turn feed into natural or built waterways. 
Cross-roadbed drainage pipes are used to connect lateral drainage ditches via a connec­
tion under the tracks. 

Maintaining the integrity of the railroad drainage system is of paramount importance for 
any RWT. Since many RWTs are constructed where there is an existing lateral drainage 
ditch or swale, a new drainage system must be designed. The cost of  this system, along 
with a section identifying the basic design approach, should be included in the feasibility 
study. Also, the RWT paved surface will add to the local surface runoff, and should be in­
cluded in the drainage calculations as appropriate. 

The feasibility study should include a section on drainage, and especially how the existing 
railroad drainage system will be maintained. Prototype designs of any changes along with 
cost estimates should be included if the RWT will impact the existing drainage system in 
any way. The railroad company or agency should review plans, even if the proposed trail 
is adjacent to railroad property. 

Lighting 

Lighting an RWT is dependent on a variety of factors, including cost to install, maintain, 
and operate; whether the RWT will be used as a commuter facility in the winter and low 
light hours; and potential impact on neighbors. Most paved paths are not illuminated due 
to the expense to install and maintain the lighting and the potential impacts on nearby 
homes. Exceptions to this are at-grade crossings and undercrossings, where lighting is a 
matter of safety and visibility. Trail designers should take into account lighting impacts on 
train operation and visibility for any RWT crossing of or under a roadway and/or tracks. 

One innovative pathway lighting concept that may be considered is to have lighting acti­
vated by motion detectors, so that the trail is lighted while people approach and a few 
minutes after they pass, but not for the entire night. 

Signing and Markings 

Advisory and regulatory signs on RWTs related to transportation (stop, slow, curve ahead, 
etc.) should follow MUTCD standards, especially for signs that directly impact user safety. 
The size, frequency, location, and other aspects are clearly identified in the MUTCD or 
State highway design manual. Local agencies may use their own discretion for other signs, 
such as user protocol between pedestrians and bicyclists, speed limits, hours of use, and 
emergency contact information. 

The feasibility study should present recommendations, designs, specifications, and costs 
on signing and striping that meet Federal and State standards, and the local agency needs. 
This may include entrance or gateway signs, natural or historic interpretation signs, or 
regulatory and etiquette signs. 
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Equestrian Considerations 

Lack of equestrian experience near railroads, horses’ instinctual flight 
behavior, and equestrians’ general wariness of new and potentially 
challenging situations require specific design considerations when 
planning for equestrian use on RWTs. All RWTs with potential eques­
trian use require site-specific analysis. Some equestrian users advo­
cate fences of sufficient height to prevent horses jumping them when 
startled or frightened; however, this concern must be balanced with 
the need for visibility of trains for both horses and riders. Horses that 
cannot see an oncoming or approaching train will experience greater 
fear and confusion than if they are able to see and identify the source 
of noise. Equestrian use should not be promoted where barriers cre­
ate a narrow trail environment. 

Trail width is an overriding design issue when considering equestrian use on RWTs. RWTs 
designed to accommodate equestrian use should provide separate pathway treads for mul­
tiple users. Narrow railroad rights-of-way that afford width for only a single paved trail, 
or that provide inadequate shy distance for horses frightened by nearby or oncoming 
trains, are not appropriate candidates for accommodation of equestrian use. 

Trestles and bridges require additional considerations. Many horses are frightened by 
bridges and other elevated environments, particularly lattice or perforated bridges and 
trestles that allow the animal a view of the ground surface substantially below the bridge 
deck. Most horses are not accustomed to this environment and will respond unpredictably 
with potentially negative consequences. 

Considerations for Steam Locomotives 

Several trails exist and/or are proposed within proximity to steam locomotives, for which 
special consideration is warranted. From time to time, depending on operations and the 
steam locomotive itself, it is necessary to blow condensation out of the steam cylinders 
while the locomotive is standing or moving. The outlets for this escaping steam and mois­
ture are less than 300 mm (12 in) above the ground, and generally shoot out perpendicu­
lar to the locomotive. This may startle nearby trail users. Also, the reciprocating motion of 
valves and drive rods (attached to the large drive wheels) require additional lateral clear­
ance for safety reasons. Thus, the feasibility study for RWTs proposed alongside steam lo­
comotives should analyze the need for additional setback and other safety measures. 

Equestrian RWT users require 
special design consideration. 
Bourbon, MO 
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